HEMATOPOIESIS AND STEM CELLS Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation

نویسندگان

  • Tiago C. Luis
  • Floor Weerkamp
  • Brigitta A. E. Naber
  • Miranda R. M. Baert
  • Edwin F. E. de Haas
  • Tatjana Nikolic
  • Sjanneke Heuvelmans
  • Ronald R. De Krijger
  • Jacques J. M. van Dongen
  • Frank J. T. Staal
چکیده

Canonical Wnt signaling has been implicated in various aspects of hematopoiesis. Its role is controversial due to different outcomes between various inducible Wnt-signaling loss-of-function models and also compared with gain-of-function systems. We therefore studied a mouse deficient for a Wnt gene that seemed to play a nonredundant role in hematopoiesis. Mice lacking Wnt3a die prenatally around embryonic day (E) 12.5, allowing fetal hematopoiesis to be studied using in vitro assays and transplantation into irradiated recipient mice. Here we show that Wnt3a deficiency leads to a reduction in the numbers of hematopoietic stem cells (HSCs) and progenitor cells in the fetal liver (FL) and to severely reduced reconstitution capacity as measured in secondary transplantation assays. This deficiency is irreversible and cannot be restored by transplantation into Wnt3a competent mice. The impaired long-term repopulation capacity of Wnt3a / HSCs could not be explained by altered cell cycle or survival of primitive progenitors. Moreover, Wnt3a deficiency affected myeloid but not B-lymphoid development at the progenitor level, and affected immature thymocyte differentiation. Our results show that Wnt3a signaling not only provides proliferative stimuli, such as for immature thymocytes, but also regulates cell fate decisions of HSC during hematopoiesis. (Blood. 2009;113:546-554)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation.

Canonical Wnt signaling has been implicated in various aspects of hematopoiesis. Its role is controversial due to different outcomes between various inducible Wnt-signaling loss-of-function models and also compared with gain-of-function systems. We therefore studied a mouse deficient for a Wnt gene that seemed to play a nonredundant role in hematopoiesis. Mice lacking Wnt3a die prenatally aroun...

متن کامل

HEMATOPOIESIS AND STEM CELLS The canonical Wnt pathway shapes niches supportive of hematopoietic stem/progenitor cells

Considerable information has accumulated about components of BM that regulate the survival, self-renewal, and differentiation of hematopoietic cells. In the present study, we investigated Wnt signaling and assessed its influence on human and murine hematopoiesis. Hematopoietic stem/progenitor cells (HSPCs) were placed on Wnt3a-transduced OP9 stromal cells. The proliferation and production of B ...

متن کامل

The canonical Wnt pathway shapes niches supportive of hematopoietic stem/progenitor cells.

Considerable information has accumulated about components of BM that regulate the survival, self-renewal, and differentiation of hematopoietic cells. In the present study, we investigated Wnt signaling and assessed its influence on human and murine hematopoiesis. Hematopoietic stem/progenitor cells (HSPCs) were placed on Wnt3a-transduced OP9 stromal cells. The proliferation and production of B ...

متن کامل

SCL/TAL1 expression level regulates human hematopoietic stem cell self-renewal and engraftment.

The fate of hematopoietic stem cells (HSCs) is regulated through a combinatorial action of proteins that determine their self-renewal and/or their commitment to differentiation. Stem cell leukemia/T-cell acute lymphoblastic leukemia 1 (SCL/TAL1), a basic helix-loop-helix (bHLH) transcription factor, plays key roles in controlling the development of primitive and definitive hematopoiesis during ...

متن کامل

Transcriptome study for early hematopoiesis--achievement, challenge and new opportunity.

Hematopoietic stem progenitor cells are the source for the entire hematopoietic system. Studying gene expression in hematopoietic stem progenitor cells will provide information to understand the genetic programs controlling early hematopoiesis, and to identify the gene targets to interfere hematopoietic disorders. Extensive efforts using cell biology, molecular biology, and genomics approaches ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009